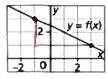
Chapter 6 Linear Functions Extra PRACTICE

Name:



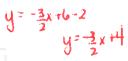
1). What is the slope of this line on the right?

B.
$$-\frac{1}{2}$$

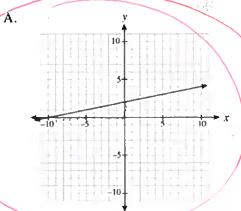
C.
$$\frac{1}{2}$$

D. 2

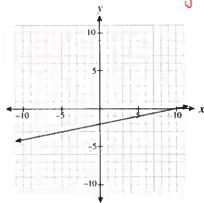
2). Which equation is not equivalent to the others?

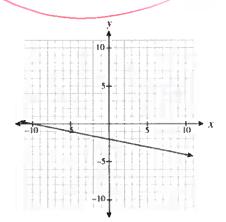

$$\mathbf{A.} \ y - 8 = -\frac{3}{2}(x+8)$$

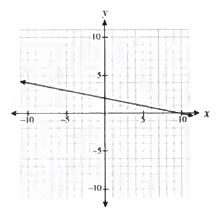
$$\mathbf{B}_{\bullet} y = -\frac{3}{2}x + 4$$


C.
$$3x + 2y - 8 = 0$$

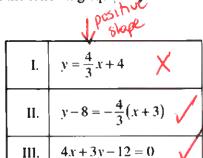
D.
$$y+2=-\frac{3}{2}(x-4)$$

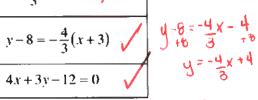

3). Which graph represents the relation
$$x^{3} = \frac{3x}{2} + \frac{24}{2} + 8$$
 $y^{2} = \frac{3x}{2} + \frac{12+8}{2} + \frac{10}{2} = 0$?

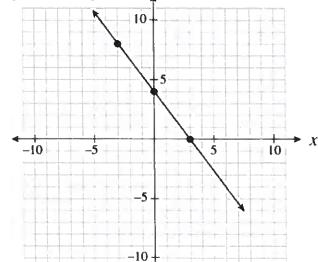



B.

C.




D.


$$x-5y+10=0$$

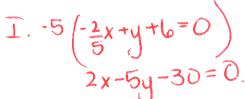
 $-5y=-x-10$
 $-5=-5$
 $y=-5x+2$

4). Which of the following equations describes the linear relation graphed at the right?

 $y=-\frac{4}{3}x+4$

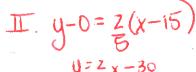
- A). II only
- B). I and II only
- Land III only **C**).
- II and III only D).
- 5). Determine the equation of a line, in slope-intercept form, that passes through the points (6,1) and (-10,9).

- A). $y = -\frac{1}{2}x + 4$
- B). $y = -\frac{1}{2}x 2$
- y = -2x + 8C).
- $v \approx -2x + 13$ D).



$$=\frac{9-1}{-10-6}=\frac{8}{-16}=\frac{1}{2}$$

$$y^{-1} = \frac{1}{2}(x - 6)$$

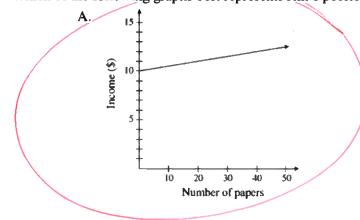

$$y^{-1} = \frac{1}{2}x + 3$$

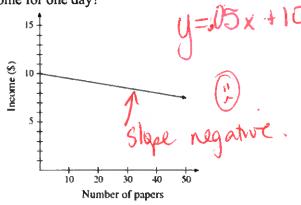
6). Which of the following relations could be produced by $y = \frac{2}{5}x - 6$?

- A). I only
- B). II only
- C). I and II only
- I, II, and III D).

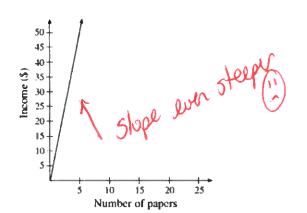
- 少言x一些

- $= \frac{4}{10-6} = \frac{8}{-16} = \frac{1}{2} \quad \text{for } \frac{1}{10-10} = \frac{1}{2} \quad \text{for } \frac{1}{10-10} = \frac{1}{2} = \frac{1$ 2x - 5y - 30 = 0
 - $\{(15, 0), (10, -2), (-5, -8), (-10, -10)\}$ 11. III. -10
- 7). A line with an undefined slope passes through the points (-2,1) and (p,q).
 - Which of the following points could be (p,q)?

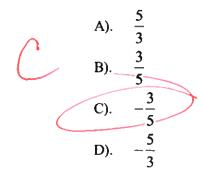

- (1,0)A).
- (0,1)B).
- (0,-2)C).
- (-2,0)D).


denominator to be the same in malfined is vertical line.


8). Jim delivers newspapers. He gets paid 10 dollars for every day of work, plus 5 cents for every paper he delivers.


D.

Which of the following graphs best represents Jim's possible income for one day?



9). Determine the slope of the linear relation 3x + 5y + 15 = 0.

$$\frac{5y^{2}-3x-15}{5}$$

$$y=-3x-3$$

10). Which of the following coordinates are intercepts of the linear relation 2x - 3y + 30 = 0?

B	
	A).

B).

- I only

У	1	
Q	1+30=	D
	$\frac{3}{3}$ $\frac{1}{1} = -31$	0
` س	对一	3
	N=10	
	10.10	>
	C_{Δ}	/

I. (0, 10)11. (-10, 0)III. IV. (-15, 0)

C). II and III only

I and IV only

- D). II and IV only

11). Kelly explained her method for graphing the linear relation $y = -\frac{2}{3}x + 7$ as follows:

Steps				
I.	Place a dot on the y-axis at positive 7.			
II.	Move up two on the y-axis to positive 9.			
III.	From the positive 9, move to the left three spots and place a dot there.			
IV.	Draw a line through the two dots.			

Where did Kelly make the first mistake, if any, in her explanation?

- A). Step I
- B). Step II
- Step III C).
- D). There is no mistake.

12). Alex bought 144 bagels for \$80. His profit was \$75 once he had sold 100 bagels.

Which equation below represents Alex's profit P, as a function of the number sold, n?

A).
$$P = -0.05n + 80$$

B).
$$P = 0.05n - 80$$

C).
$$P = 0.75n$$

B).
$$P = 0.05n + 80$$

C). $P = 0.75n$
D). $P = 1.55n - 80$

C). P = 0.75nD). P = 1.55n - 8013). Determine the slope-intercept equation of the line that is parallel to $y = \frac{2}{5}x - 3$ and passes through the point (0,5).

A).
$$y = -\frac{5}{2}x - 3$$

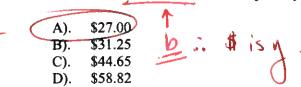
$$(x) y = -\frac{5}{2}x + 5$$

C).
$$y = \frac{2}{5}x + 3$$

C).
$$y = \frac{2}{5}x + 3$$

D). $y = \frac{2}{5}x + 5$

$$y = 2x + 5$$


14). Lines A and B are perpendicular and have a same x-intercept. The equation of line A is x + 2y - 4 = 0. Determine the y-intercept of line B.

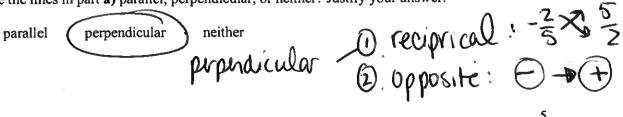
$$y-0=2(x-4)$$

 $y=2x-8$

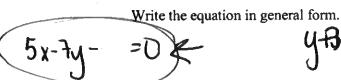
$$y = \frac{1}{2}$$

15). The cost to insure jewellery is a fixed amount plus a percentage o	f the value of the jewelry.
 It costs \$32 to insure \$1000 worth of jewelry, or 	
 It costs \$44.50 to insure \$3500 worth of jewelry. 	inde deo-

What is the fixed amount to insure jewelry?


elry, or ewelry.	Up	dao -	M= 44.50-	32
1	INDUP X	14	3500-	000
	(3500	32 44.50	= 12.5	125
	0	? m=1		20100
	-	20	י סי	
44.50		500)+b		
44.50	200 = 3500 200	+5 \$	44.50= 17.5 t -17.50 - 17.5 27.02-b	か

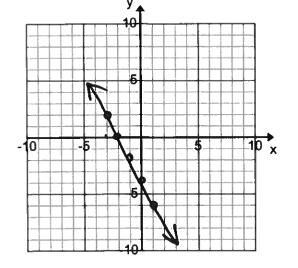
ii) a line described by the equation
$$3 - 7 + 7 = 10$$


$$\frac{-2y}{-2} = \frac{-5x-7}{-2} \implies y = \frac{5x}{2} + \frac{1}{2} = \frac{1}{2}$$

$$m=\frac{5}{2}$$

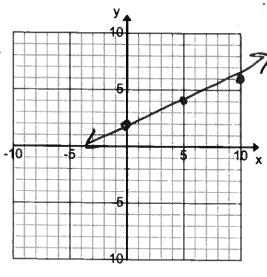
b) Are the lines in part a) parallel, perpendicular, or neither? Justify your answer.

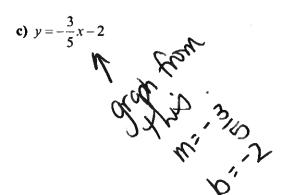
17). a) Write an equation for the line that passes through E(4, -3) and is parallel to the line $y + 1 = \frac{5}{7}(x - 4)$.

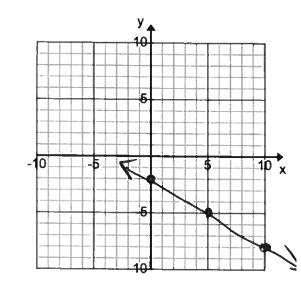


1 form. $y + 3 = \frac{5}{7}(x - 4)$ $y + 3 = \frac{5}{7}x - \frac{29}{7}$ $y + \frac{29}{7} = 0$

b) Write an equation for a line with x-intercept -3 and y-intercept 5. Explain your strategy.

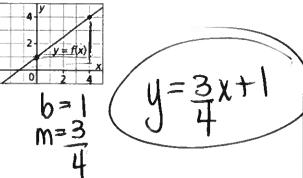

18). Graph each equation. Describe the strategies you

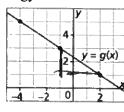

a)
$$y-2=-2(x+3)$$
 $point is (3,2)$
 $m=-2$



b)
$$2x - 5y + 10 = 0$$

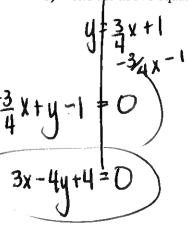
 $-5y = -2x - 10$
 -5
 $y = \frac{2}{5}x + 2$





19).

a) Write an equation for each graph. Describe or show your strategy.



(-1,3) point. $M=-\frac{2}{3}$ 0. use slope point

$$m=-\frac{2}{3}$$

$$y-3=\frac{-2}{3}(x+1)$$
or $y-5=\frac{-2}{3}(x+4)$
or $y-1=\frac{-2}{3}(x-2)$

b) Write the above equation in part a) in general form.

c) Use a point on the line to verify each equation.

$$3(0)-4(1)+4=0$$

 $0-4+4=0$
 $0=0$

Ver ified

b) Write the above equation in part a) in slope-point form or slope-intercept (whichever form is not shown in part a).

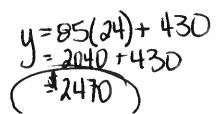
c) Use a point on the line to verify each equation.

Use point
$$(2.1)$$

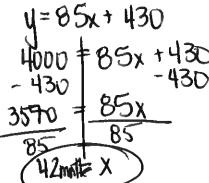
 $2(2)+3(1)-7=0$
 $4+3-7=0$
 $0=0$ / with

1450

- 20). Josie started a part-time job when she was 16. She had opened a saving account a few years earlier and had already some money in the account. Each month, she put a fixed amount into her savings account. After 4 months, Josie had \$770 in her savings account. After one year, she had \$1450 in her savings account.
- a) Write an equation to describe this relation. Write your equation in slope-intercept form.

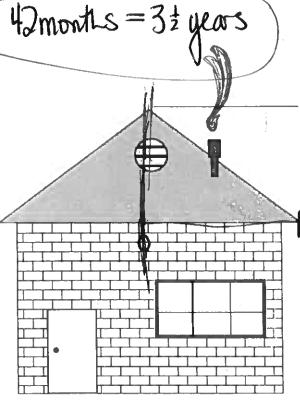

*start in slope-point term
$$y=1450=85(x-12)$$

$$y-1450=85x-1020$$


$$y+1450=1450$$

$$y=85x+430$$

b) How much money will Josie have after 2 years?


c) How long will it be until Josie has \$4000 in her savings account?

21). Use a ruler to determine the slope of the roof shown below.

State the slope as both a fraction & as a decimal.

Slope as a fraction 4

Note: This diagram is drawn to scale.