Math (F\&P) 10
Polynomial Review
Name:

Learning Goal \#1: I will be able to determine the prime factors of a number

1. Write the prime factorization of 35700

Learning Goal	Beginning	Developing	Proficient	Sophisticated
I will be able to find LCM/GCF using prime factorization				
I will be able to show the multiplication of polynomials				
I will be able to show the factoring of polynomials				

$$
=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17
$$

2. Write the prime factorization of 5463

塩势

$$
=3^{2} \cdot 607
$$

3. Write the prime factorization of 325

$$
=5^{2} 219
$$

4. Write the prime factorization of 348

$$
=2^{2} \cdot 3 \cdot 2 a
$$

5. What is the LCM of 14 and 30 ?

$$
\begin{aligned}
\operatorname{LCM}(14,30) & =2 \cdot 3 \cdot 5 \cdot 7 \\
& =210
\end{aligned}
$$

6. What is the LCM of 58 and 124 ?

$$
2 \frac{58}{29} \frac{2424}{262}
$$

$$
\begin{aligned}
\operatorname{LCM}(5,5,201) & =2^{2} \cdot 29 \cdot 31 \\
& =3596
\end{aligned}
$$

7. What is the LCM of 125 and 175 ?

$$
5 \frac{\sqrt[125]{55}}{\frac{5}{5}}
$$

$\frac{5 \longdiv { 1 7 5 }}{5 \frac{35}{7}}$

$$
\left.L O m_{(105,117)}\right)=\frac{5^{3} \cdot 7}{875}
$$

Learning Goal \#2: I will be able to show the multiplication of polynomials

$$
\begin{aligned}
& \begin{array}{l}
\text { 1. Multiply the bereamnomials. Be sure to show all your wool! } \\
5 x\left(9 x y^{2} y^{2}-11 y^{4}+3\right) \\
45 x^{4} y^{2}-55 x y^{4}
\end{array}+15 x \\
& \text { b. }\left(\sqrt[y-8\left(122^{2}-3 y+34\right)]{2 y^{3}-3 y^{2}+14 y-16 y^{2}+24 y-112} \begin{array}{r}
2 y^{3}-19 y^{2}+38 y-112
\end{array}\right. \\
& (4 a-20)\left(a^{3}+2 a a^{2}-2\right)-c-12 \\
& 4 a^{4}+8 a^{2} b-8 a-20 a^{3}-40 a b+40-c-12 \\
& 4 a^{4}-20 a^{3}+8 a^{2} b-40 a b-8 a-c+28
\end{aligned}
$$

2. Calculate the area of the below shape:

$$
\begin{aligned}
& \begin{aligned}
\text { Area } & =l \times w) \\
& =(4 x+3)(2 x+2)
\end{aligned} \\
& \int_{4 x+3}^{2 x+2} \\
& =8 x^{2}+14 x+6 \\
& \text { 3. Calculate the area of the below shape: } \\
& \text { Shy 1. }=(3)(3 y)=9 y \\
& \begin{aligned}
\text { Shpe2 } & =(7 y-3-5)(2 y+3-7) \\
& =(3 y-8)(2 y+4)
\end{aligned} \\
& \begin{array}{l}
=(x y-8)(2 y-4) \\
\left.=14 y^{2}\right)
\end{array} \\
& =14 y^{2}-28 y-16 y+32 \\
& \text { Area } \text { DeAL }= \\
& =14\left(22-4 y y+32 \quad 9 y+14 y^{2}-44 y+32+10 y+10^{-3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { by }{ }^{2} 2 y^{2 y} 7 \\
& 5 \\
& \begin{array}{l}
\sqrt{x^{2}-7 x-30} \text { factovi } \\
3 m^{3}-9 m^{2}+18 m+7 m^{2}-21 m-42 \\
3 m^{3}-2 m^{2}-3 m-42
\end{array} \\
& \text { 5. Multiply (ueregrabuivi fooperm } \\
& \text { a. } x+5(54 x-22) \xrightarrow{x^{2}-12 x+5 x-60}=x^{2}-7 x-60 \\
& \text {. } \text {. (2x+21) } 4 y-1) \quad 8 y^{2}-2 y+8 y-2=8 y^{2}+6 y-2
\end{aligned}
$$

$$
\begin{aligned}
\text { d. } 4+0 p)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Learning Goal \#3: I will be able to show the factoring of polynomials } \\
& \text { 1. Which of the following trinomial can be represented by a rectangle? Explain HOW you would prove this }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } \frac{e^{2}+2 l e+3}{12 c} x \\
& \frac{2\left(12 b^{2}+25 b-7\right)}{(84)} \\
& \begin{array}{c}
60 x \\
2\left[12 b^{2}+21 b+4 b-7\right] \\
2[3(4 b+7)+10
\end{array} \\
& -1\left(13 z^{2}+9 z-4\right) \\
& \rightarrow-1\left(13 z^{2}+13 z-4 z-4\right) \\
& \begin{array}{l}
-1[13 z+(z+1)-4(z+1)] \\
-1(13 z-4)(z+1)
\end{array} \\
& 8 m^{2}-12 m n-22 m n+33 n^{2} \\
& 4 m,(2 m-3 n)-\ln (2 m-3 n) \\
& (4 m-1 m)(2 m-3 n) \\
& \text { 5. } \left.4 x^{2}-2 x+5\right)(2 x-5) \\
& \frac{12 m^{3}-16 m+4 m^{3}}{16 x m^{2} n^{3}}-8 m^{2}-16 m \rightarrow 8 m\left(2 x m n^{3}-m-2\right) \\
& \text { 7. }{ }^{2}-x-20 \quad(x+4)(x-5)
\end{aligned}
$$

