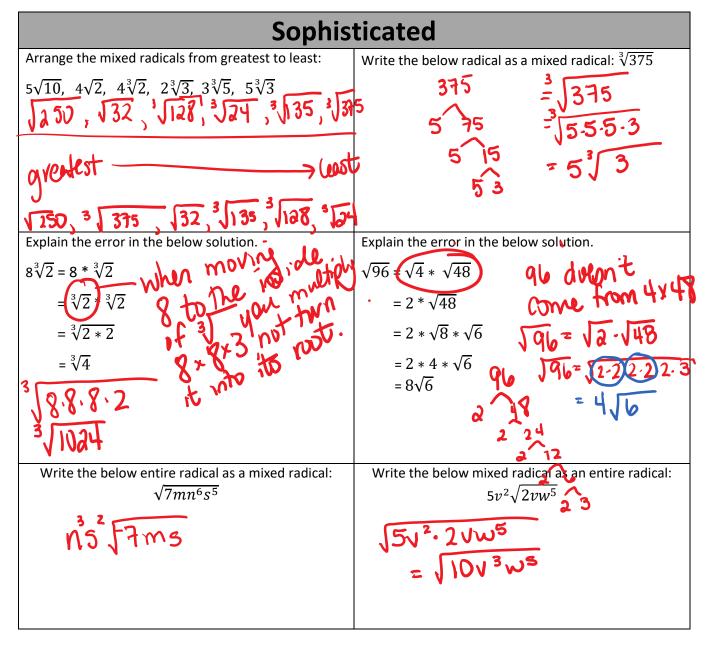
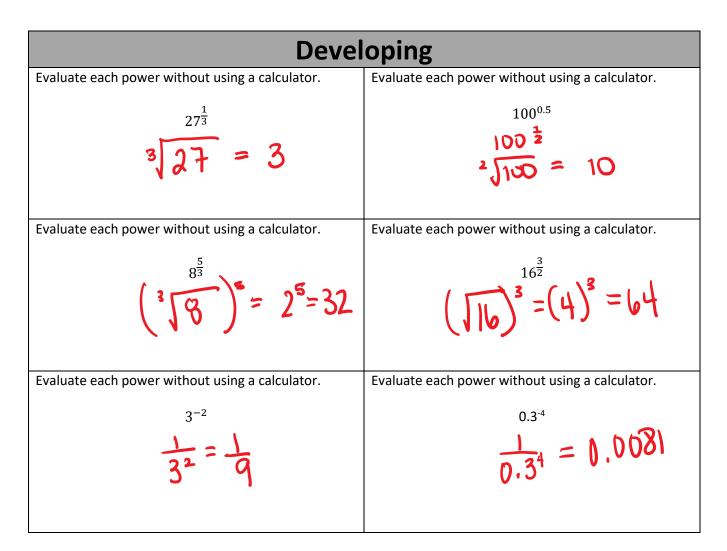
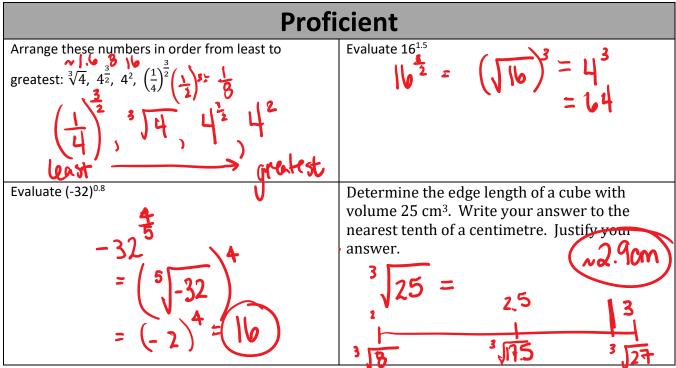
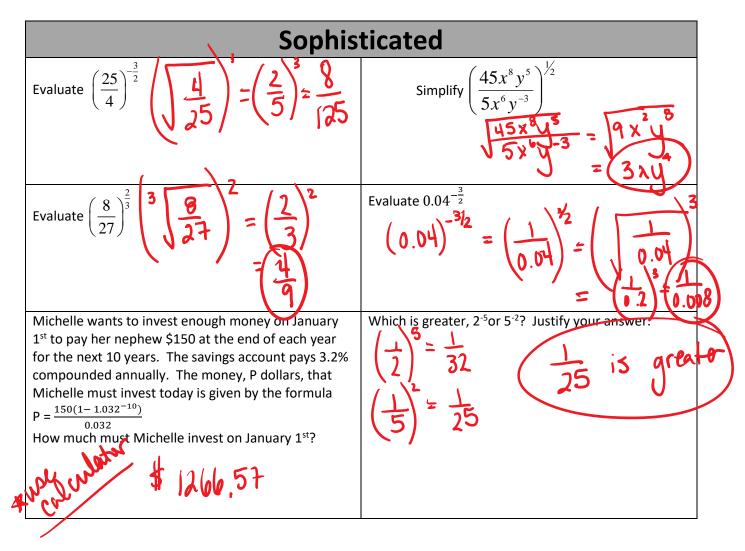

Math 10 Radicals and Powers REVIEW


Radicals and Powers REVIEW	Name: Key K				
Learning Goal	Beginning	Developing	Ρ	oficient	Sophisticated
I will be able to express a radicals in multiple forms (entire			\mathcal{C}		
and mixed)					
I will be able to use the laws of exponents to simplify power					
expressions					


Learning Goal #1: I will be able to express radicals in multiple forms (entire and mixed)





Simplify
$$(2x^{-3}y^{4})^{3}$$

 $3 - 9$
 $2 \cdot \chi \cdot y =$
 $3 - 9$
 $3 - 9$
 $2 \cdot \chi \cdot y =$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 3

